Reductions of operator pencils
نویسنده
چکیده
We study problems associated with an operator pencil, i.e., a pair of operators on Banach spaces. Two natural problems to consider are linear constrained differential equations and the description of the generalized spectrum. The main tool to tackle either of those problems is the reduction of the pencil. There are two kinds of natural reduction operations associated to a pencil, which are conjugate to each other. Our main result is that those two kinds of reductions commute, under some mild assumptions that we investigate thoroughly. Each reduction exhibits moreover a pivot operator. The invertibility of all the pivot operators of all possible successive reductions corresponds to the notion of regular pencil in the finite dimensional case, and to the inf-sup condition for saddle point problems on Hilbert spaces. Finally, we show how to use the reduction and the pivot operators to describe the generalized spectrum of the pencil and to exhibit a semigroup for the corresponding constrained partial differential equation. AMS Classification: 15A21, 15A22, 34A30, 47A10, 65L80
منابع مشابه
A variational approach to the problem of oscillations of an elastic half cylinder
This paper is devoted to the spectral theory (more precisely, tothe variational theory of the spectrum) of guided waves in anelastic half cylinder. We use variational methods to investigateseveral aspects of propagating waves, including localization (seeFigure 1), existence criteria and the formulas to find them. Weapproach the problem using two complementary methods: Thevariational methods fo...
متن کاملOn the Correspondence between Spectra of the Operator Pencil A− Λb and of the Operator Ba
This paper is concerned with the reduction of the spectral problem for symmetric linear operator pencils to a spectral problem for the single operator. Also, a Rayleigh–Ritz–like bounds on eigenvalues of linear operator pencils are obtained.
متن کاملSeparability preserving Dirac reductions of Poisson pencils on Riemannian manifolds
Dirac deformation of Poisson operators of arbitrary rank is considered. The question when Dirac reduction does not destroy linear Poisson pencils is studied. A class of separability preserving Dirac reductions in the corresponding quasi-bi-Hamiltonian systems of Benenti type is discussed. Two examples of such reductions are given. This paper will appear in J. Phys. A: Math. Gen. AMS 2000 Subjec...
متن کاملBoundary Value Problems for a Class of Elliptic Operator Pencils
In this paper operator pencils A(x,D, λ) are studied which act on a manifold with boundary and satisfy the condition of N-ellipticity with parameter, a generalization of the notion of ellipticity with parameter as introduced by Agmon and Agranovich–Vishik. Sobolev spaces corresponding to the Newton polygon are defined and investigated; in particular it is possible to describe their trace spaces...
متن کاملSchrödinger Operators and Associated Hyperbolic Pencils
For a large class of Schrödinger operators, we introduce the hyperbolic quadratic pencils by making the coupling constant dependent on the energy in the very special way. For these pencils, many problems of scattering theory are significantly easier to study. Then, we give some applications to the original Schrödinger operators including one-dimensional Schrödinger operators with L– operator-va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 83 شماره
صفحات -
تاریخ انتشار 2014